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ABSTRACT

We study the problem of cosmic ray diffusion in the galactic disk with particu-

lar attention to the problem of particle scattering through the θ = cos−1(v‖/v) =

90o pitch angle in momentum space by wave-particle mirror interaction (here v‖

is the cosmic ray velocity parallel to the average galactic magnetic field). We con-

sider the case in which cosmic rays are the only source of magnetic turbulence,

which originates as the relativistic particles try to stream through the interstellar

plasma faster than the local Alfven speed. The wave growth rate is proportional

to the cosmic ray anisotropy and the amplitude of hydro-magnetic waves gener-

ated by this streaming instability is limited by the presence of various damping

mechanisms. We study the propagation of cosmic rays in the different phases

of the I.S.M., in particular the coronal regions (where the main form of wave

dissipation is non-linear Landau damping) and the warm regions (where charge

exchange between the ions and the neutral atoms gives rise to the dominant form

of wave dissipation). We also account for ion-cyclotron damping of small wave-

length waves. The effect of a spectrum of waves is to limit the anisotropy of

the cosmic ray distribution function, and hence to limit their drift velocity. We

show that quasi-linear resonant scattering cannot account for particle diffusion

everywhere in momentum space, and that particles with θ ∼ 90o must change

their pitch angle by mirror interaction with long wavelength waves generated by

the θ ∼ 0 particles. We match the quasi-linear scattering with the adiabatic mir-

roring in a small boundary layer in momentum space close to the θ ∼ 90o point

and then we calculate the diffusion coefficient together with the cosmic ray drift

velocity. We show that scattering through the 90o point is very efficient and we

calculate the correction to the particle diffusion coefficient due to the presence of

mirroring.
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Subject headings: Cosmic Rays, 90o pitch angle

1. Introduction

Cosmic rays strongly interact with the galactic magnetic field and their diffusion in

space is regulated by this interaction. According to quasi-linear theory, cosmic rays scatter

off waves of wavelength comparable to their gyroradius, giving rise to an effective diffusion

in pitch angle which, in turn, regulates their real space diffusion (Kulsrud and Pearce

1969; Wentzel 1969). The waves are predominantly low frequency hydro-magnetic waves.

Although their origin could be due to the presence of some source of galactic magnetic

turbulence, driven by gas turbulence or stellar activity it is more likely that cosmic rays

themselves, as they try to stream faster then the local Alfven speed through a magnetized

plasma, generate them by the resonant streaming instability. In this paper we focus our

attention to this second possibility. Although quasi-linear theory has proven successful in

explaining the physics of the propagation of cosmic rays, the question of scattering through

a pitch angle of 90o has not yet been successfully resolved. The 90o problem has been

analyzed by several authors in the course of the years, in particular Völk (1973), Klimas and

Sandri (1973) and Goldstein (1976, 1980). In this paper we wish to present a self-consistent,

yet simple theory, that resolves the problem by including mirror interaction with waves self

generated by quasi-linear interaction itself.

Throughout this paper we make use of the result that the waves propagate mainly

parallel to the magnetic field and only waves propagating in one direction are excited. Thus

k⊥ρ � 1 (where ρ is the perpendicular particle gyroradius) and k‖ ≈ k and we can work

in the frame of reference moving with the waves. The validity of this result is discussed

in Appendix B. The waves propagate in the same direction as the particle drift velocity.

In this frame the waves are static, i.e. ωr = 0 and the energy of the cosmic rays remain
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constant.

In this frame the wave-particle resonant condition is (Kulsrud and Pearce 1969):

kr =
1

µrL
, (1)

where rL = v/Ω is the proton Larmor radius, Ω is the relativistic gyro-frequency and

µ = cos(θ) = v‖/v where θ is the particle pitch angle. Eq. (1) shows that cosmic rays of

larger pitch angle (µ → 0) interact with waves of shorter wavelength. The 90o problem

arises from the fact that there is very little wave energy in small wavelength waves. Hence,

particles of large pitch angle are unable to scatter across the θ = 90o point by resonant

scattering. If no other process can account for their crossing of 90o, a large anisotropy would

appear in the cosmic ray distribution function together with a drift velocity comparable to

the speed of light, contrary to observations.

In this paper we consider a model in which the source of cosmic rays and their sink

are connected by a magnetic flux tube of length Lz and study particle diffusion parallel to

the magnetic field as they propagate through the interstellar medium. We first study the

propagation of particles in the coronal regions of the disk, where the typical ion temperature

is Ti ≈ 106 K and the average ion density is ni ≈ 10−3 cm−3. Then we discuss propagation

in the warm regions, where Ti ≈ 104 K and ni ≈ 0.03 cm−3, where there is a large fraction of

neutral particles, with density nH ≈ 0.2 cm−3, which linearly damp the waves. Throughout

this paper we will take a value of Bo ≈ 3 µG for the galactic magnetic field strength.

We show that the 90o problem is resolved once we include the effect of mirroring of

particles of θ ∼ 90o by MHD waves quasilinearly generated by the θ ∼ 0 resonant particles.

Although this mirror and the quasilinear wave interaction act over all pitch angles, the

mirror interaction dominates for θ very near 90o, while the quasilinear interaction dominates
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outside of this small region. Therefore we treat the problem as a boundary layer problem.

By solving the cosmic ray diffusion equation and the wave spectrum equation in steady state

we calculate self-consistently the cosmic ray distribution function and the wave spectrum

everywhere in pitch angle space. We show that the distribution function is well behaved at

θ = 90o (see Fig. 5 where we plot the normalized distribution function with and without

the effect of mirroring). We then determine the particle diffusion coefficient and show that

its expression is given by the familiar one (Cesarsky 1980) plus a correction due to the

presence of the mirror region which appears as the natural logarithm of µc = cos(θc), where

θc is the critical value of the pitch angle above which mirror interaction becomes dominant.

The value of θc is determined self-consistently from the problem.

The paper is organized as follows. In Sections 2 and 3 we restrict ourselves to

cosmic rays of a few GeV. In Sec. 2 we determine the wave spectrum and the cosmic ray

distribution function self-consistently in the quasilinear region by solving the steady state

cosmic ray kinetic equation and by balancing the growth rate and the linear or non-linear

damping rate. In Sec. 3 we include the effect of the mirror interaction and solve for the

wave spectrum and cosmic ray distribution function in the boundary layer near θ = 90o.

We numerically solve the kinetic equation for the cosmic ray distribution function to match

onto the quasilinear region. Finally, we calculate the cosmic ray diffusion coefficient and

drift velocity. In Sec. 4 we expend our analysis to include cosmic rays of many GeV and

derive the energy dependence of the cosmic ray drift velocity. In Sec. 5 we draw our

conclusions and indicate open problems and possibilities for future research.
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2. Quasi-Linear Scattering of Cosmic Ray Protons of a few GeV

2.1. The Diffusion Equation

We first consider cosmic ray protons of a few GeV. Thus, we set γ ≈ 5 and neglect

relativistic effects. The kinetic equation for the cosmic ray distribution function F (p, µ, z, t)

is (Kulsrud and Pearce 1969):

∂F

∂t
+ µ̇

∂F

∂µ
+ vz

∂F

∂z
=

∂

∂µ

[

1− µ2

2
ν(µ)

∂F

∂µ

]

+ S(p, z) , (2)

where the term proportional to µ̇ represents the mirror interaction. In the quasi-linear

region considered in this section we drop this term. S(p, z) is the source (or sink) of cosmic

rays and ν(µ) is the wave-particle collision frequency defined in terms of the wave spectrum

I(k) as:

ν(µ) =
π

4
Ω2

o

∫

d3k I(k) δ (kvz − Ωo) . (3)

Here I(k) is the energy spectrum of MHD waves normalized to B2
o/8π, where Bo is the

background magnetic field and Ωo = Ω(γ = 5) is the non-relativistic gyrofrequency. The

delta function δ(kzvz − Ωo) represents the resonant condition. Note that only the first

harmonic wave-particle interaction is present, since higher harmonic interaction is absent in

the k⊥ = 0 limit. The resonant particles are then the particles whose pitch angle satisfies

the resonant condition, Eq. (1), with rL = ro = c/Ωo. By performing the integration over

the delta function we obtain:

ν(µ) =
π

4
ΩoEr(µ) , (4)

where E = (δB/Bo)
2 and Er represents the energy in the waves at the resonant wavenumber
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kr:

Er(µ) = krI(kr) =
1

µro

∫

d2k⊥I

(

1

µro

, k⊥

)

. (5)

To simplify the notation we will omit the subscript ”r”. We solve Eq. (2) in the limit of

strong scattering by writing F = Fo + F1 + F2 + ..., with F1/Fo � 1 and F2/F1 � 1. To

lowest order the distribution function is isotropic, i.e. F0 = F0(p, z, t). Integrating Eq. (2)

to first order (assuming quasi-steady state and weak source) we have:

∂F1

∂µ
= − v

ν (µ)

∂F0

∂z
=

4

π

ro

Lz

1

E(µ)
, (6)

valid in the quasi-linear region, i.e. for |µ| > µc. In deriving Eq. (6), we have introduced the

normalized F = F1/F0 and Lz is the cosmic ray density scale length, L−1

z ≡ −∂ln(Fo)/∂z.

The flux of cosmic rays in the ẑ direction (along Bo) is:

Φz = 2πv

∫

F1 µ dµ p2 dp = 2πv

∫

1

−1

F µ dµ

∫ ∞

po

Fo p2 dp =
ntot

c.r.v

2

∫

1

−1

F µ dµ (7)

Defining the bulk drift velocity of the cosmic rays by Vdrift = Φz/n
tot
c.r. we have:

Vdrift

v
=

1

2

∫

1

−1

F µ dµ (8)

We can obtain F from Eq. (6) in the quasilinear region (|µ| > µc) once we know the wave

spectrum. To find the contribution to the drift velocity coming from the |µ| < µc region we

need to include the mirror interaction and solve the boundary layer problem, and that will

be done in the next section.
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2.2. The Growth Rate

In the limit of k⊥ρ � 1 and γ ≈ 1 the expression for the growth rate of hydro-magnetic

waves valid in the reference frame of the waves is (Kulsrud and Pearce 1969):

Γg(k) = π2e2

(

VA

c

)2 ∫

d3p v2

⊥

1

VAp

∂F (p, µ)

∂µ
δ (kvz −Ωo) . (9)

Taking a power law for Fo, Fo ∝ p−n, we have:

Γ(µ) = Ωo

(

n− 3

n− 2

)

π

8

(

c

VA

)(

ntot
c.r.

ni

)

µ
[

1 − µ2
]

[

∂F(µ)

∂µ

]

, (10)

where ntot
c.r. is the total number of cosmic rays. Throughout this paper we will use the

experimental value of n = 4.7 when evaluating expressions.

Eq. (10) shows that the growth rate is proportional to the anisotropy δ ' F of the

cosmic ray distribution function. In turn, as we see from Eq. (6), the anisotropy is inversely

proportional to the quasi-linear scattering rate, so that it is also inversely proportional to

the energy in the waves. Then the picture arises in which the cosmic ray anisotropy acts

to create a spectrum of waves, which in turn act back on the anisotropy to reduce it. We

combine Eq. (6) and Eq. (10) to obtain:

Γ(µ) =

(

n− 3

n− 2

)

Ωo

2

(

c

VA

)(

ntot
c.r.

ni

)(

ro

Lz

)

(

1− µ2
) µ

E(µ)
. (11)

We now determine the wave spectrum by balancing the growth rate and the damping rate

assuming that the waves are marginally stable.
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2.3. The Wave Spectrum in the Coronal Regions of the I.S.M.

A large portion of the galactic disk is filled with a low density, hot plasma immersed in

the galactic large scale magnetic field which is of the order of few microgauss (Cowie and

Songaila 1986; Spitzer 1978). This phase of the interstellar gas is known as the coronal

phase, its typical parameters being an average ion density of 10−3 cm−3 and a temperature

of the order of 106 K. Parallel propagating MHD waves do not suffer linear damping. Of the

non-linear damping mechanisms possible, the most important is non-linear Landau damping

(Kulsrud 1978; Völk and Cesarsky 1982), which arises when two circularly polarized Alfven

waves beat together to produce a third pseudo wave that has a variation in the magnitude

of the field strength. The beat wave exerts a force on the background thermal ions, and

when the ion thermal distribution is Maxwellian, energy flows from the wave with higher

frequency (larger k-vector) to the wave with the lower frequency and to the thermal plasma

ions. Hence high frequency waves are damped by the presence of low frequency waves and

by the presence of thermal particles. We write the unsaturated damping rate as (Kulsrud

1978):

Γn.l. =
1

2

√

π

2

[

< v4

⊥ >

8V 4
i

]

Vi k E(k) , (12)

where the average < v4

⊥ > is to be taken over particles which are not trapped in the

beat wave. For a thermal distribution in which no particles are trapped we simply have

< v4

⊥ >= 8V 4

i so that Eq. (12) becomes:

Γn.l.(µ) =
1

2

√

π

2

(

Vi

c

)(

Ωo

µ

)

E(µ) , (13)

where we have made use of the resonant condition Eq. (1). At marginal stability, the

growth rate, Eq. (11) and the damping rate, given by Eq. (13), balance each other. Thus,
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by setting Γg(µ) = Γn.l.(µ) we obtain an expression for the wave spectrum:

E(µ) = A µ
√

1− µ2 , (14)

where the constant A depends on astrophysical parameters and is defined by:

A =

(

2

π

)
1

4

(

n− 3

n− 2

)
1

2

√

c

VA

c

Vi

ro

Lz

ntot
c.r.

ni
. (15)

We determine the distribution function from Eq. (6) and Eq. (14):

∂F(µ)

∂µ
=

4

π

(

ro

Lz

)(

1

A

)

1

µ
√

1− µ2
, (16)

so that as µ → µc, F(µ) ∝ ln(µ). For purpose of estimating E in the coronal regions take

Ti ≈ 80 eV, ni ≈ 10−3 cm−3 and Bo ≈ 3 × 10−6 G. We than have Ωo ≈ 5.7410−3 rad/sec,

ro ≈ 5.23 × 1012 cm, Vi ≈ 8.76 × 106 cm/sec and VA ≈ 2.06 × 107 cm/sec. The value of Lz

is uncertain, and we choose a reasonable value for it, Lz ∼ 3 kpc. We then have for the

astrophysical constant A ' 1.19 × 10−5

It is true that if the beat wave amplitude in non-linear damping were too large, thermal

particles could become trapped in the wave and the damping rate is reduced. However, in

appendix A we show that for the parameters of interest, small angle collisions prevent any

such trapping so that Eq. (13) is valid.

2.4. The Wave Spectrum in the Warm Regions of the I.S.M.

In the warm regions, neutral atoms are present. The damping rate is then due to

charge exchange between the ions and the neutral atoms and is given by (Kulsrud and
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Pearce 1969):

Γin =
1

2
nH〈σv〉in , (17)

Therefore, as we will show, in the warm regions Γin � Γn.l. and the marginal stability

condition is Γg(µ) = Γin, where the ion-neutral damping is independent of the pitch angle.

Using our expression for the growth rate, Eq. (11), we find that the spectrum is given by

the formula:

E(µ) = Cµ(1− µ2) , (18)

where C is:

C =

(

n− 3

n− 2

)(

c

VA

)(

ntot
c.r.

ni

)(

ro

Lz

)

Ωo

2 Γin
. (19)

By comparing this expression for the wave spectrum with the one obtained using the

non-linear Landau damping as the main form of wave dissipation, Eq. (14), we see that the

two are very similar, in the sense that both are proportional to µ as µ2 � 1 and both are

zero at µ = 1. The difference appears in the constants A and C. Let us then compare then

magnitude using typical parameters of the warm regions, Ti ≈ 1 eV, ni ≈ 0.03 cm−3 and

Bo ≈ 3× 10−6 G we have Vi ≈ 1× 106 cm/sec and VA ≈ 3.78 × 106 cm/sec. The numerical

value for the ion-neutral damping rate is Γin ' 8.40 × 10−9nH at a plasma temperature

of Ti ' 104 K (Kulsrud and Cesarsky 1971). For nH ≈ 0.2cm−3 and Lz = 3 kpc, we

find that the strength of the magnetic perturbations in the warm regions of the I.S.M. is

C ≈ 1.61× 10−8. Note that C � A, as is expected since the linear damping is more efficient

in dissipating the wave energy than the non-linear Landau damping.
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Finally, we remark on the exponential suppression of waves with small wavelength due

to their interaction with the thermal ions present in the plasma. That the gap in the wave

spectrum generated by ion-cyclotron damping around µ = 0 in the absence of mirroring is

of the order of (Vi/c) (Holman et al. 1979; Felice 2000). In Sec. 3 we show that this gap

does not prevent cosmic rays from crossing the 90o point since mirror scattering becomes

dominant in this region of µ-space. Therefore, we conclude that the overall effect of ion

cyclotron damping is not important, although for some time in the past it was a concern.

3. Scattering Through the 90o Point - The Adiabatic Region

From Eq. (16) we see that F (µ) diverges as µ → 0 even if the diffusion coefficient is

finite. This result was derived under the assumption that the only wave-particle interaction

is the doppler shifted cyclotron resonance ω − kzvz = Ωo. However, these linearly excited

waves have a second order variation in their field strength δB2/Bo producing a mirror

interaction and as µ → 0 the pitch angle resonant interaction becomes weak and this mirror

interaction takes over. Thus, the theory as given in the previous section is incomplete

and this mirror interaction should be added to the pitch angle interaction. In this more

complete theory ∂F (µ)/∂µ and F (µ) are not longer singular at µ = 0.

In summary, the growth rate due to the anisotropy decreases as µ → 0, while the

non-linear damping increases, so that the wave amplitude (δB/Bo)
2 goes as µ. In order

to maintain the flux in µ-space ∂F (µ)/∂µ must diverge at µ = 0. But if we allow the

particles to scatter adiabatically with the long wavelength waves, then we find that the flux

in maintained by the mirror interaction so that F is finite as µ → 0.

The variation of ∂F (µ)/∂µ, which results from the analysis, with and without the

mirror interaction in indicated in Fig. (5). The pitch angle below which the mirror
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interaction dominates is denoted by µc. For much smaller µ ≈ Vi/c � µc, the thermal ions

can interact with the waves reducing their amplitude even more (Holman et al. 1979), but

F is not affected at this smaller µ since the mirror interaction is mainly carried out by the

long wavelength waves which are not affected by the linear cyclotron damping.

The magnetic field can be written as the superposition of the background field plus

the Alfven waves, B = Bo + δB2/Bo. The adiabatic equation of motion for a particle in

the field of linearly polarized Alfven waves (or wave packets of circular polarization) is ( for

k⊥ = 0) (Krall and Trivelpiece 1990):

dv‖(t)

dt
= − v2

⊥

2Bo

d

dz

(

δB2

2Bo

)

, (20)

where δB2/2Bo is the perturbed field strength. Let us fix our attention on particles of

given µ. Consider all the waves interacting with particles of other pitch angle µm (particles

with µm interact with waves of wavenumber km = 1/µmro). In Sec. 2 we showed that

E(µ) ∝ µ ∝ 1/k, so that combined with (20), we see that the mirror force kmE(µm) is

independent of µm. However, unless the wave packet centered around km ∝ 1/µm, is strong

enough to mirror the cosmic ray µ, the force on the particle will average out. Thus, it is

reasonable to restrict attention to only those waves µm whose potential is high enough to

reverse the motion of the particle.

Let’s rewrite Eq. (20) in terms of a potential as:

dv‖
dt

= −dU(z)

dz
= −c2

4

d

dz

(

δB

Bo

)2

(z) , (21)

where we set v⊥ = c (when working near the mirror region we drop µ2 compared to 1). A

particle which obeys Eq. (21) is reflected (i.e. µ → −µ) if the particle parallel energy v2

‖/2

is less than the peak of the potential U(max). The magnetic field has a wave-like behavior
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and d/dz → k. The condition for reflection is then:

µ2 <
1

2

(

δB

Bo

)2

=
E(µm)

2
. (22)

A word on our notation. We introduce the notation µm to distinguish the particle µ

which is being mirrored from the wave which is doing the mirroring. The mirroring wave

is label by its wavenumber km and it is created by the particle µm through the resonance

condition km = 1/µmro. This is equivalent to parameterizing the wavelength by µm.

This is convenient because the adiabatic interaction is not a resonant interaction. In the

quasi-linear region, where the scattering is of a resonant type, for every particle µ there is

only one resonating wavelength λ = 2πµro, but in the adiabatic region a particle with a

given µ � 1 interacts with waves of long wavelength (i.e. those waves which are resonant

with µ ∼ 1 particles). From Eq. (22) we see that for fixed µm there is a maximum µ below

which reflection becomes possible. This particular value of µ that we shall denote by µc

corresponds to adiabatic interaction of particles with the largest wavelength waves present

in the system, those corresponding to µm ∼ 1. Therefore:

µc =

√

A

2
. (23)

If we use the value for A obtained in Sec. 2, A ' 1.19×10−5, we than have µc ' 2.44×10−3.

In the warm regions of the interstellar space the critical value µc is still given by the

above expression with A replaced by C. Using our previous result, C ≈ 1.61 × 10−8, and

µc ' 8.97× 10−5. Therefore, we see that in the coronal region, where ion-cyclotron damping

at small wavelengths occurs, the dissipation region where the waves are exponentially

damped, µ . Vi/c, is smaller than the onset of the adiabatic region.
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3.1. The Matching between the Adiabatic Region and the Quasi-Linear

Region

We now write down the equations for the cosmic ray distribution function F and for

the wave spectrum E = (δB/Bo)
2 in the boundary layer region. In steady state, the cosmic

ray distribution function F (µ, z, p) satisfies Eq. (2), where now the term corresponding

to the mirror interaction, the µ̇ term, becomes important. From the mirror equation, Eq.

(20), we obtain the expression for µ̇:

µ̇(z) = −Ω

2
Emcos

(

z

ro

)

. (24)

where we take the magnetic field to have a sinusoidal behavior: (δB/Bo)
2 = Ecos(kz) and

Em is the wave spectrum evaluated at µm = 1. We normalize Eq. (2) together with the

marginal stability condition in the boundary layer region to obtain:

µ̃
∂F̃
∂z̃

− cos(z̃)
∂F̃
∂µ̃

=
π

4

∂

∂µ̃

[

Ẽ ∂F̃
∂µ̃

]

, (25)

∂F̃
∂µ̃

=
Ẽ
µ̃2

. (26)

where we have defined the normalized quantities µ̃ = µ/µc and z̃ = z/ro, together with

Ẽ = E/Aµc and F̃ = F/Fc, with

Fc =
4

π

(

ro

Lz

)(

1

A

)

' 1.8

√

VA

c

Vi

c

ro

Lz

ni

ntot
c.r.

. (27)

where we used the definition of A as given by Eq. (15) and we evaluated the numerical

constant using n = 4.7. Deep in the quasi-linear region (µ̃ � 1) the cosmic ray distribution

function is F̃(µ̃) = ln(µ̃)+1. As we move closer to the adiabatic region from the quasi-linear
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region, the term corresponding to the mirror interaction becomes important. In order to

solve the system of equations numerically, we seek the correct boundary condition near

µ̃ & 1, where a perturbation approach in powers of 1/µ̃ is valid. This is:

F̃(µ̃, z̃) ' ln(µ̃) + 1 +
sin(z̃)

µ̃2
− 2π cos(z̃) + sin2(z̃)

µ̃4
+ O

(

1

µ6

)

(28)

In the next subsection we numerically solve the system of partial differential equations,

Eqs. (25) and Eqs. (26) subject to the boundary conditions given by Eq. (28). The

contribution to the drift velocity, Eq. (8), coming from the 0 ≤ µ . µc region only involves

a dimensionless constant times the normalization. Therefore, the remainder of this Section

is devoted to the numerical solution of the boundary layer problem which will ultimately

give us the numerical value of the constant. The numerical solution also elucidate the

physics of the mirror scattering through the 90o point.

3.2. Numerical Solution of the Boundary Layer

We solve the dimensionless system of equations, Eqs. (25) and (26), for the cosmic ray

distribution function F̃(µ̃, z̃) and the spectrum Ẽ(µ̃, z̃) by a finite difference method. In a

way this problem is very similar to a boundary layer problem in which the global solution

of a system of equations in known everywhere except in a small region in space. The

global solution is then used as a boundary condition for the boundary layer which itself is

investigated numerically by integrating the equations subject to the boundary conditions

imposed by the global solution.

We create a grid in (µ̃, z̃) space and write Eqs. (25) and Eqs. (26) as difference

equations. We fix the boundary condition on F̃ by Eq. (28) at a value of µ large enough to

justify the expansion. We choose µ̃ = ±4. We then implement periodic boundary condition
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in z̃ such that F̃(µ̃, z̃ = 0) = F̃(µ̃, z̃ = 2π). We solve the system of differential equations

using the relaxation method. Both the finite difference method and the relaxation method

used to solve systems of P.D.E. with fixed boundary conditions are discussed extensively in

the literature (see for example Press et. al. (1992)) and they will not be described in this

paper.

The quasi-linear solution is odd-symmetric in µ so that F̃(µ̃ = 4, z̃) = −F̃(µ̃ = −4, z̃).

We specify an initial form for the distribution function F̃(µ̃, z̃) and the spectrum Ẽ(µ̃, z̃)

and let it relax in time until the solution converges and the final answer becomes time

independent. Note that both the distribution function and the spectrum now depends on

z, i.e. the mirroring depends on where the particle is found within the wave packet. We

assume that locally (in z) the growth and the damping balance each other so that a steady

state can be reached and a well defined wave spectrum created (indeed, due to Alfven wave

dispersion, local growth and damping of the wave happens in a time scale shorter compared

to the time wave packets propagate relative to the long wave (Foote and Kulsrud 1979)) .

Before we present the answer let us describe qualitatively what happens as a particle

approaches the adiabatic region from the quasi-linear region. The particle energy is the

sum of the kinetic energy and the potential energy of the magnetic field:

µ̃2

2
+ sin(z̃) = const. = E (29)

where E is the energy of the particle, which is obviously conserved in the absence of

quasilinear scattering. In Fig 1 we presents the contour plots of Eq. (29) for different

values of the energy E. Note the presence of a separatrix at E = 1 and the trap region for

E < 1. In the quasi-linear region (large µ) the lines are only weakly distorted from straight

lines. In this region the distribution function is independent of z and the scattering is

mostly resonant (the mirroring being small). As a particle moves closer to the separatrix,
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its motion will be determined by the combined effect of the mirroring and the resonant

diffusion. The distribution function F̃ will then depend on z, i.e. the motion of the particle

will depend on where in the potential well of the wave the particle is located. Note that

from our scaling condition we found that the various terms of the cosmic ray diffusion

equation, which are the convection term, the mirror term and the diffusion term, are all

comparable in strength at µ = µc. Thus, deep in the mirror region there is still a finite

energy in the waves which can resonant scatter the particles and force them to change their

orbit as they move in the potential well of the magnetic field in the adiabatic motion.

To carry out the numerical integration we create a grid (Imax × Jmax) in (µ̃, z̃) space

for −4 ≤ µ̃ ≤ 4 and 0 ≤ z̃ ≤ 2π. We find that a grid with Imax = 100 and Jmax = 50

is fine enough to represents the differential equations by the difference equations (that

is to say, as we increase the grid resolution the solution does not change significantly).

We choose our time step to be small enough to ensure stability and convergence. In

these particular runs we have chosen the increments for the various variables to be

dµ̃ = 8/100 = 0.080, dz̃ = 2π/50 = 0.125 and dt̃ = dµ̃2/16 = 0.0004. The typical relaxation

time is τrelax = 1/dt̃ = 2500. We find that the solution approaches steady state after few

relaxation times. We can see this in Fig 2 where we show the distribution function as a

function of time for 4 different points (µ̃, z̃) as a function of the relaxation time. Notice

that the functions become constant after few relaxation times. Therefore, out final solution

is time independent and represents the correct solution of the system of equations (25) and

(26).

In Fig. 3 we show the plot of the normalized cosmic ray distribution function F̃(µ̃, z̃)

as a function of µ/µc for different values of z̃. Note that the curves all approach the

quasi-linear solution as µ̃ → ±4, that is, F̃ ∼ ln(µ̃). Note also how the solution if well

behaved as µ̃ → 0. Inside the boundary layer the distribution function is not necessarily
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µ 
/ µ

c

Fig. 1.— Contour Plots of the Particle Energy. Note the presence of a separatrix at E = 1

and the trap region for E < 1
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Fig. 2.— In this plot we show the convergence of the solution to the steady state cosmic ray

distribution function in the adiabatic region for four different points in (µ̃, z̃). Notice how

the distribution function becomes a constant after few relaxation times
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odd-symmetric for all values of z̃ even though the equations themselves are symmetric. In

Fig 4 we present the plots of the wave spectrum Ẽ(µ̃, z̃) as a function of µ̃ for two values of

z̃. Note that the wave spectrum is perfectly symmetrical.

Finally, in Figs. 5 and 6 we present the averaged values for the distribution function

and of the wave spectrum defined as:

〈F̃(µ̃, z̃)〉z̃ =
1

2π

∫

2π

0

dz̃ F̃(µ̃, z̃) (30)

and likewise for 〈Ẽ(µ̃, z̃)〉. Note that this averaged solution for the distribution function

is both odd-symmetric and well behaved around µ = 0. In this plot we also present the

quasi-linear solution given by ln(µ̃) + 1. It is clear that the analytical solution approaches

the numerical solution as one moves away from the adiabatic region. It is striking to see

what difference the mirror interaction has on the distribution function. Indeed, one can see

how without the mirror term one would get a singularity at µ = 0 which is removed by the

inclusion of the adiabatic effect.

3.2.1. The Cosmic Rays Drift Velocity

We can now evaluate the cosmic ray parallel flux and their drift velocity given by Eq.

(8). The integral must be divided into two parts, one corresponding to the contribution

coming from the adiabatic region and the other coming from the quasi-linear region. Thus,

in terms of µ̃

Vdrift

c
= 2µ2

cFc

[

∫

4

0

dµ̃ µ̃ 〈F̃ (µ̃, z̃)〉z +

∫

1/µc

4

dµ̃ µ̃ F̃(µ̃)

]

, (31)

where 4 is the maximum value of µ̃ used in the numerical solution of F̃(µ̃, z̃) and 〈F̃(µ̃, z̃)〉z̃
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Fig. 3.— Plots of the distribution function F̃(µ̃, z̃) in the adiabatic region for z̃ =

π/2, π, 3π/2, 2π
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Fig. 4.— Plots of the normalized wave spectrum Ẽ(µ̃, z̃) in the adiabatic region for z̃ =

π/2, 3π/2
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Fig. 5.— Plots of the averaged normalized distribution function 〈F̃(µ̃, z̃)〉z in the adiabatic

region
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Fig. 6.— Plots of the averaged normalized wave spectrum 〈Ẽ(µ̃, z̃)〉z in the adiabatic region
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is given by Eq. (30) and plotted in Fig. 5. Upon numerical integration we find:

∫

4

0

dµ̃ µ̃ 〈F̃(µ̃, z̃)〉z ≈ 1.90 . (32)

Eq. (32) represents the normalized flux carried by the mirroring in the adiabatic region.

Using the quasi-linear solution for the distribution function, F̃ = ln(µ̃) + 1, we can evaluate

the second integral in Eq. (31) to obtain the final expression for the cosmic ray diffusion

coefficient. We can also express our result in terms of the cosmic ray anisotropy δ and

diffusion coefficient D by means of the relation δ = 3D/cLz , where the cosmic ray drift

velocity is Vdrift = δc/3. Then in the rest frame we obtain:

Vdrift − VA

c
= Fc

{[

ln

(

1

µc

)

+
1

2

]

− 26.37 µ2

c

}

, (33)

where the expression for Fc is given by Eq. (27). Note that the contribution to the

cosmic ray diffusion coefficient coming from the adiabatic region is small compared to

the contribution coming from the quasilinear region (essentially by µ2

c). This is because

the boundary layer region (0 ≤ µ . µc) is much smaller than the quasilinear region

(µc . µ ≤ 1). On the other hand, this region is very important since it sets the lower

limit cutoff to the quasi-linear region µc and thus effects the magnitude of the cosmic ray

diffusion coefficient.

We can estimate the numerical value of the diffusion coefficient using the typical values

for the various physical parameter presented above. In the coronal region, where the main

form of the damping mechanism is non-linear Landau damping, we find Fc ' 6.03 × 10−5

and µc ' 2.44 × 10−3. The Alfven velocity is VA ≈ 2.06 × 107 cm/sec and the cosmic ray

drift velocity in the rest frame is then Vdrift ≈ 3.24 × 107 cm/sec. This corresponds to a

value for the cosmic ray diffusion coefficient of D ' 2.99× 1029 cm2/sec and a value for the
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cosmic ray anisotropy of δ ' 3.24 × 10−3. Thus, from our analysis it is evident that in the

coronal region the cosmic rays are very efficiently scattered by the hydro-magnetic waves

they generate so that they are essentially convected at the local Alfven speed.

In the warm HI regions, where the main damping mechanism is due to ion-neutral

charge exchange, the diffusion coefficient can be substantially higher, since the dissipation

mechanism is more severe. The analysis which leads to the expression for D in the warm

region is the same as the one followed to find the diffusion coefficient in the coronal region,

accounting for the difference in the energy in the waves. With the values of parameters

presented above, we find Fc ' 4.47 × 10−2 and µc ' 8.97 × 10−5. The Alfven velocity

is VA ≈ 3.78 × 106 cm/sec and the cosmic ray drift velocity in the rest frame is then

Vdrift ≈ 1010 cm/sec. Note that the factor introduced by the logarithm of 1/µc is of the

order of 10 in the warm region.

According to our analysis, cosmic rays can propagate through the warm regions with

drift velocity comparable to the speed of light. This is the result of a very strong linear

damping and the impossibility for the waves to growth at large enough amplitude where

they could scatter the particles. However, this large anisotropy and drift velocity in the

warm region is actually found to be much smaller when it is appreciated that the warm

regions are mixed in with the coronal regions, where the drift velocity is few times the

Alfven speed. In fact the cosmic ray density is essentially constant in the warm regions (its

effective density gradient scale length Lz is very large). The effective length in the coronal

region is the true length of the lines in the coronal regions only (see Figure 7). The observed

anisotropy in the warm regions is then given by the anisotropy in the coronal regions.

Finally, we can now calculate the cosmic ray residence time in the gaseous disk. The

particle confinement in the disk is mainly accomplished in the hot coronal regions, as

demonstrated above. Thus, the cosmic ray residence time can be estimated by:
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)

z

Fig. 7.— Effective Cosmic Rays Density Gradients in the I.S.M. The density gradient in the

warm regions is effectively infinite (and the particle density constant)
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tlife = fh

(

Lz

Vdrift

)

, (34)

where fh is the fraction of the disk that is filled with hot plasma and Vdrift ≈ 3.24×107 cm/sec

is the cosmic ray drift velocity in the coronal regions as estimated above. Taking fh = 1/2

and Lz = 3 kpc one then finds that tlife ≈ 4.5 Myrs, which is of the same order of the three

million years derived from the chemical composition. In Sec. 5 we discuss this result and

its implications. However, first we derive the energy dependence of the cosmic ray diffusion

coefficient which is done in the next section.

4. Energy Dependence of the Diffusion Coefficient

In Sections 2 and 3 we focused our attention on the pitch angle scattering of cosmic

rays of a few GeV. We now wish to consider the general problem of the energy dependence

of the diffusion coefficient. In calculating the growth rate we must include the contribution

coming from particles of all energies to the growth of waves with given wavenumber k. The

growth rate then becomes:

Γg(k) = 2π2e2
VA

c

1

k

∫ ∞

po

dp p

∫

1

−1

dµ(1 − µ2)
∂F (p, µ)

∂µ
δ

(

µ− p∗
p

)

, (35)

where p∗ = eBo/ck.

There are two ranges of k to consider; First, if p∗ < po (short wave lengths, the µγ < 1

region in Fig. 8) then there is a resonant µ for all p > po. Second, if p∗ > po (long wave

lengths, the µγ > 1 region in Fig. 8), then there is a resonant µ only for p > p∗.

Thus, in the first case, the p integral extends from p0 to ∞ and we obtain
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µγ < 1

γ = 1

γ = 2

γ = 3

Fig. 8.— Resonant surfaces of constant k = eB/cp∗. Here p∗ = µp = pz is the parallel

projection of the cosmic ray momentum along the magnetic field
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Γg =
Ωo

2

(

c

VA

)(

ntot
c.r.

ni

)

[

1− n− 3

n− 1

(

p∗
po

)2
]

1

Lzk

1

E(k)
for k > eB0/cp0, (36)

In the second case, p∗ > p0 the p integral extends from p∗ to ∞ and we obtain

Γg =
Ωo

2

(

c

VA

)(

n∗c.r.
ni

)[

1− n− 3

n− 1

]

1

Lzk

1

E(k)
for k < eB0/cp0, (37)

where n∗c.r. = ntot
c.r.(po/p∗)

n−3 is the number of cosmic rays with energy above p∗. Note that

if p∗ = po, Eqs. (36) and (37) are the same.

The damping rates, both in the coronal regions and in the warm HI regions, are the

same as given by Eq. (12) and Eq. (17). As before, we assume marginal stability of

the waves so that by equating the growth rate to the damping rates we obtain the wave

spectrum. We neglect constant terms of order one.

In the coronal regions of the disk, where the main form of damping is non-linear

Landau damping, we obtain:

E(µ, γ) '







A µ0.15 γ0.15 if p∗ < po

A µγ if p∗ > po

(38)

where A is still defined by Eq. (15). (Since for resonance γµ = eB0/mc2k, E(µγ) is really a

function of the single variable k.)

In the HI regions, where the main form of damping is ion-neutral charge exchange, we

obtain:

E(µ, γ) '







C µ−0.7 γ−0.7 if p∗ < po

C µγ if p∗ > po

(39)
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where C is given by Eq. (19). Note that the spectrum is continuous at the transition point

µγ = 1.

In our γ = 1 analysis in Sec. 3 we found that the energy dependence of the overall

diffusion coefficient is dominated by the quasi-linear region and its cutoff µc. Since the

correction due to the mirror region appears as the log of µc, we can safely neglect its energy

dependence. Then from Eq. (8),

D(γ) ≈ v2

∫

1

µc

(1 − µ2)

ν(µ, γ)
dµ (40)

If γ > 1, the integral must be broken into two parts. From Eq. (39, for µ < 1/γ, E = Aµγ,

and for µ > 1/γ, E = Aµ0.15γ0.15. We then find:

D(γ) ' 4

π

c2

Ωo

1

A

{[

ln

(

1

µcγ

)

− 1

2γ

(

1− µ2

cγ
2
)

]

+

[

0.83γ0.85 − 1.18 +
0.35

γ2

]}

, (41)

where the first term in parenthesis must be set to zero when γ ≥ 1/µc. µc is given by Eq.

(23) in the coronal region. In Fig. 9 we plot this expression for µc = 2.13 × 10−3. Note

that for γc & 7 the diffusion coefficient has the power law energy dependence D ∝ γ0.85.

Also note how the energy dependence deviates strongly from the simple power law for small

values of the cosmic ray energy.

In the warm regions the energy dependence of the diffusion coefficient is readily

calculated using Eq. (8) together with the form of the spectrum given by Eq. (38). Thus,

the expression for D(γ) in the warm regions of the interstellar space is:

D(γ) ' 4

π

c2

Ωo

1

C

{[

ln

(

1

µcγ

)

− 1

2γ

(

1− µ2

cγ
2
)

]

+

[

0.32γ1.7 − 0.59 +
0.27

γ2

]}

, (42)
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Fig. 9.— Plot of the normalized diffusion coefficient as a function of energy for µc = 2.2×10−3
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where µc =
√

C/2. In this region the diffusion coefficient very similar to the diffusion

coefficient in the coronal regions, Eq. (41), with the difference that now the energy

dependence is much stronger. Indeed, we have that in the warm regions of the interstellar

space D ∝ γ1.7.

Finally, it must be noted that the energy dependence for the diffusion coefficient in

the coronal region, D ∝ γ0.85, at large energies, is the same as that found in Cesarsky and

Kulsrud (1981) and the energy dependence for the diffusion coefficient in the warm regions,

D ∝ γ1.7 is the same as they found in Kulsrud and Cesarsky (1971). In this Section we

have extended these earlier results to cover the correction due to the presence of the mirror

region which becomes important at energies of a few GeV.

5. Conclusions

In this paper we studied cosmic ray scattering through the θ = 90o pitch angle in

momentum space by wave-particle mirror interaction. By constructing a self-consistent

model of cosmic ray propagation in the interstellar medium we were able to derive an

expression for the particle diffusion coefficient and to estimate their residence time in the

disk.

Scattering near the θ ∼ 90o pitch angle is produced by the particle mirror interaction

with long wavelength waves generated by particles with θ ∼ 0 by the quasi-linear resonant

interaction. In Sec. 2 we have shown how quasi-linear theory alone cannot account for

particle crossing the µ = 0 point. We calculated the wave spectrum and the cosmic ray

distribution function and we showed that the expression for the diffusion coefficient is

a singular at µ = 0. We discussed how ion-cyclotron damping could further exacerbate

the problem. In Sec. 3 we included the effect of mirroring and solved the diffusion
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equation numerically and we showed that the singularity is naturally removed by adiabatic

wave-particle interaction. We then re-calculated the cosmic ray diffusion coefficient and

showed that the effect of mirror interaction appears in the expression for D as the natural

logarithm of the cutoff µc. The critical cutoff is itself determined self-consistently from the

model. We showed that cosmic ray are mainly confined in the hot regions of the interstellar

medium and we calculated the particle residence time in the disk and found that our model

predicts tlife ≈ 4.5 Myrs, which is consistent with the observed particle residence time in

the dense disk as deduced from the chemical composition. Finally, in Sec. 4 we derived

the energy dependence of the diffusion coefficient to find that the result in the coronal

regions, D ∝ γ0.85, is consistent with the experimental evidence derived from the cosmic

ray anisotropy which predicts a somewhat flatter power law. We extend the earlier work

by (Cesarsky and Kulsrud 1981) by deriving the energy dependence of the particle drift

velocity in the few GeV range.

5.1. Open Problems and Future Work

By resolving the 90o problem we have shown that cosmic ray scattering through the

θ = 90o point is efficient. Resolving this problem does not solve the problem of cosmic

ray escape from the disk. This very important, and yet unresolved, problem is ultimately

connected to the topology of the galactic magnetic field. Either the lines are permanently

open to the extragalactic medium, or they are sporadically broken open by violent events in

the galactic disc. Otherwise, because of their small gyration radius they could never escape

contrary to their observed composition.

Parker (1992) proposed a possible explanation to the escape problem. The idea is that

cosmic ray pressure could build up in the disk until it would drive magnetic bubbles near

the edge of the disk. Cosmic rays would be partially trapped in the bubbles and ultimately



– 36 –

they could escape together with part of the magnetic flux when the bubble finally detaches.

The creation of magnetic bubbles would be helped by the explosion of supernovae close

to the boundary of the disk or by the superposition of many SN’s explosions (so called

superbubbles). Ferrière (1992, 1993) studied the dynamics of magnetic bubbles expansion

taking into account the effect of a distribution of SNs explosions. Very recently Rafikov and

Kulsrud (2000) expanded this work and determined that the gravitational pull from the

disk on the matter attached to the field lines would prevent significant amount of magnetic

flux to leave the disk. Therefore, the cosmic ray escape problem is still very much an open

question.

Finally, in this paper, we have not considered the important problem of the other

possible sources of magnetic turbulence. In this paper galactic cosmic ray anisotropy

is the only source of hydro-magnetic waves. An important instance in which energetic

particle anisotropy is not the main source for the creation of a spectrum of waves occurs

in interplanetary space (Dröge 1993). Energetic MeV particles originate from solar flares

and other explosive events on the surface of the sun. These particles propagate outward

from the sun and we detect them on earth. The propagation of these particles in the

interplanetary medium is also regulated by their interaction (quasi-linear plus adiabatic)

with hydro-magnetic waves (Völk 1975). However, this magnetic turbulence mainly

originates at the sun. Its intensity is measured by satellites orbiting the earth. The analysis

in this scenario is not qualitatively different from the one presented in this paper, the main

difference being that the energy in the waves and the functional form of the wave spectrum

is not determined self-consistently from balancing the damping rate with the growth rate.

Rather, it is obtained from observation.

The result of an analysis of these results that ignores the 90 degree problem, is an order

of magnitude discrepancy between the predicted spatial diffusion and the observed one.
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In this paper we did not elaborate on these important application, which is left for

future research.

We wish to thank Roscoe White for many insightful discussions on the physics in the

boundary layer region near 90o. This work was supported by DOE under contract No.

DE-AC 02-76-CHO-3073
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Dröge, W., 1993, Heliospheric Propagation of Cosmic Rays, 23rd International Cosmic Rays

Conference - Calgary, Canada

Press et. al., 1992, Numerical recipes in C : the art of scientific computing, Cambridge

[England]; New York: Cambridge University Press.

Ferrière, K., 1992, ApJ, 391,188.

Ferrière, K., 1993, ApJ, 409,248.

Foote, E.A., and Kulsrud, R.M., 1979, ApJ, 233,302.

Goldstein, M.L. 1976, ApJ, 204,900.

Goldstein, M.L. 1980, Geophys. Res., 25,3033.

Holman, G.D.,and Ionson, J.A., and Scott J.S. 1979, ApJ, 228,576.

Kadomtsev 1965, Plasma Turbulence, London, New York, Academic Press.

Klimas, A.J., and Sandri, G. 1973, ApJ, 180,937.

Krall and Trivelpiece, 1990, Principles of Plasma Physics, McGraw-Hill, New York.



– 39 –

Kulsrud, R.M. 1978, Astronomical Papers dedicated to B.Strømgren, pag. 317, Copenhagen

Univ.Obs.

Kulsrud, R.M., and Cesarsky, C.J. 1971, ApJ, 8,189.

Kulsrud, R.M., and Pearce, W.P. 1969, ApJ, 156,445.

Parker, E.N. 1992, ApJ, 401,137.

Rafikov, R.R. and Kulsrud, R.M. 2000, MNRAS, 314,839.

Stix, T. 1992, Waves in Plasmas, A.I.P., New York.

Völk, H.J. 1973, Astrophys. Space Science, 25,471.

Völk, H.J., and Cesarsky, C.J. 1982, Z. Naturforsch,37a,809.

Völk, H.J. 1975, Reviews of Geophysics and Space Physics, 13,547.

Wentzel, D.G. 1969, ApJ, 156,303.

Cesarsky, C.J., and Kulsrud, R.M. 1981, Origin of Cosmic Rays, 251-252, Setti, G., Spada,

G., Wolfendale, A.W. (eds.), IAU

Felice, G.M., Ph.D. Thesis, Princeton University, 2000

A. Appendix A - Trapping and detrapping in non-linear Landau damping

In order to determine if trapping of the thermal ions in the potential well of the beat

wave of two interacting Alfven waves could set it, we first determine the trapping time

This manuscript was prepared with the AAS LATEX macros v5.0.
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and then compare it with the wave decorrelation time (i.e. the lifetime of the beat wave).

Alfven waves propagating in a finite βp plasma have finite dispersion, where βp = 8πniTi/B
2

is the ratio of the background ion thermal pressure to the magnetic field pressure. The

decorrelation time tdec is (Stix 1992)

tdec =
1

k (Vg − Vp)
, (A1)

where Vp is the wave phase velocity and Vg is the wave group velocity. In the laboratory

frame, the large βp Alfven wave dispersion relation is (Foote and Kulsrud 1979).

(

ω2 − k2

‖V
2

A

)2
=

1

2

ω2k4

‖V
4

i

Ω2
o

, (A2)

Treating the right hand side of the dispersion relation as a correction we obtain:

(Vg − Vp) ≈
1

2
√

2

k‖V
2

i

Ωo
. (A3)

Therefore, the decorrelation time is:

tdec =

√
8

Ωo

(

c

Vi

)2

µ2 , (A4)

where we made use of the resonant condition kvµ = Ω0 to express k in terms of µ.

Let us now derive an expression for the trapping time. The force experienced by an

ion in the potential well of the wave is Eq. (20), with v⊥ ≈ Vi. The approximate bounce

frequency of the ion as:

ωb '
√

k‖F

m
=

v⊥
2

k‖

(

δB

B

)

, (A5)
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and the trapping time is then ttrap = 1/ωb:

ttrap '
2

v⊥

µc

Ωo

1

(δB/B)
. (A6)

The ratio tdec/ttrap is then:

tdec

ttrap
=

(

c

Vi

)

µ√
2

(

δB

B

)

, (A7)

where v⊥ ≈ Vi. On the other hand, particles will tend to get untrapped due to binary

ion-ion collisions. The collision rate can be expressed in terms of the collision cross-section

σ as:

t90

ii =
1

ni < σvi >
. (A8)

where t90

ii is the time it takes an ion to scatter a full 90 degrees in velocity space. In our

case, the background Maxwellian distribution is distorted only slightly due to particle

trapping. Indeed, to became untrapped, particles only need to scatter a small angle

∆θ = ∆v‖/Vi ∼ (δB/B). Therefore, the effective ion-ion scattering time is much shorter

than the 90-degree scattering time.

teff
ii = t90

ii × (∆θ)2 =
(δB/B)2

ni < σvi >
. (A9)

The 90o ion-ion cross section is σ ' 10−12/T 2
i (eV ), and for a thermal distribution we have:

teff
ii =

(δB/B)2

niσVi
= 1012

T 2
i (eV )

niVi

(

δB

B

)2

, (A10)

or with Vi = 106T
1/2

i (eV )
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teff
ii = 106

T
3/2

i (eV )

ni(cm−3)

(

δB

B

)2

sec. (A11)

If collisions are fast enough to untrapped most of the particles, then saturation of non-linear

Landau damping will not take place. Therefore we are interested in the ratio teff
ii /ttrap. In

Table 1 we present some typical parameters of interest for the coronal region and estimate

the various time scales, the decorrelation time, the trapping time, the ion-ion collision time

and the non-linear Landau damping time as obtain from Eq. (13). It can be seen that in

every case the trapping time is faster than the decorrelation time, tdec/ttrap > 1, but the

effective collision time is faster than every other time scale, teff
ii /ttrap < 1. Therefore we

argue that it is appropriate to use the unsaturated damping rate. Note that as µ decreases,

the situation only gets better, as the amplitude of the wave decreases and the effective

ion-ion collision time decreases as well. Moreover, the ratio of the decorrelation time to the

trapping time, Eq. (A7), decreases, so thermal ions are less and less trapped.

B. Appendix B - Parallel Propagation of the Waves

Throughout the paper we have assumed that k⊥ � k‖, so that the waves are nearly

all parallel propagating. A more accurate expression for the growth rate, including its

dependence on k⊥ can be written

Γg(k) = 4π2e2

(

VA

c

)2 ∫

d3p v2

⊥

1

VAp

∂F (p, µ)

∂µ
L(x)δ (kvz − Ωo) . (B1)

The factor L represents the k⊥ dependence. For linearly polarized shear Alfven waves

L = J2

1
(x)/x2 , while for linearly polarized magnetosonic waves L = J ′2(x). However, for

small k⊥ the waves are circularly polarized and L can be taken as ≈ (1/4)(1 − x2/4). We

are interested in this limit. Thus, the growth rate can be written as
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Γ = Γ0(1−
k2

⊥ρ2

4
) , (B2)

where Γ0 is the growth rate for k⊥ = 0, The growth rate is a maximum at k⊥ = 0, and we

expect the waves to be concentrated there.

In this appendix we estimate the size of k⊥ for which the wave energy is significant,

and we show that it is very small compared to k.

If we start with only waves at k⊥ = 0, we expect that k⊥ should change from

zero because of refraction in the inhomogeneous interstellar medium. If B is uniform

but the density ni(x) is nonuniform perpendicular to B with scale length L⊥, then

dk⊥/dt = −∂ω/∂x ≈ ±ω/2L⊥. Let us assume k̇⊥ is positive. As k⊥ increases, the linear

growth rate decreases. Balancing the linear growth against the nonlinear damping, which is

independent of k⊥, one finds that when x = k⊥ρ exceeds some critical value xc the waves

damp.

Thus, the waves of interest for cosmic rays will be thermally excited at k⊥ = −k⊥c,

grow for the time it takes them to reach +k⊥c, by refraction, and then damp.

In terms of x, the net growth, that is the linear growth minus the nonlinear damping,

is:

∆Γ = Γ0(1− x2/4) − Γ0(1 − x2

c/4) =
1

4
Γ0(x

2

c − x2). (B3)

The net number of efoldings for the wave amplitude is

D =

∫

∆Γdt =

∫ xc

−xc

Γ0

dt

dx
dx =

1

3

L⊥

ρω
x3

cΓ0 (B4)

Substituting from Eq. (11) for Γo we find:
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xc =

(

3ρ

L⊥A

)1/3

D1/3 . (B5)

D is the number of required exponential growths from a thermal level to the required

amplitude for pitch angle diffusion. It is quite large. δB/B ≈ 10−4 corresponds to a

temperature of ≈ 1029 degrees K. (d3k ≈ (10−12)3 ≈ 10−36 and δB2/8π ≈ 10−19 ergs per

cm3.) Thus, starting from 104 degrees the energy amplifies by 1025 and the amplitude by

3× 1012 so D ≈ 28. Taking L⊥ = 100 pc, ρ/L⊥ ≈ 10−8.5 and A = 10−5 we find

k⊥c/k ≈ k⊥cρ = xc ≈ 0.3. (B6)

An additional process which further reduces xc is transit time damping, which is fairly

fast and acts mostly on the magnetosonic mode. Since x is fairly small there is a coupling

between the two modes (by the Hall term in Ohm’s law) and both waves suffer linear

damping in addition to nonlinear damping. A more careful treatment of these processes is

given in the thesis of the first author (Felice 2000).
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Table 1: Astrophysical values for Lz = 3 kpc and nc.r. = 1E − 10cm−3

.

Ti(eV ) ni(cm
−3) B(µG) (δB/B)2 tdec(sec) ttrap(sec) t90

ii (sec) teff
ii (sec) tn.l.(sec)

100 1.0E − 3 3.0 5.0E − 6 9.2E8 9.5E7 1.0E12 5.1E6 3.4E10

100 1.0E − 2 3.0 2.8E − 6 9.2E8 1.2E8 1.0E11 2.8E5 6.0E10

100 1.0E − 3 1.0 1.5E − 5 2.8E9 1.6E8 1.0E12 1.5E7 3.4E10

10 1.0E − 3 3.0 8.9E − 6 9.2E9 2.2E8 3.2E10 2.9E5 6.0E10

10 1.0E − 2 3.0 5.0E − 5 9.2E9 3.0E8 3.2E9 1.6E4 1.1E11

10 1.0E − 3 1.0 2.7E − 5 2.8E10 3.9E8 3.2E10 8.8E5 6.1E10
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